已知椭圆的右焦点为,且点在椭圆上,为坐标原点.(Ⅰ)求椭圆的标准方程;(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且为锐角,求直线的斜率的取值范围;(Ⅲ)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为(不在坐标轴上),若直线在轴、轴上的截距分别为、,证明:为定值.
已知函数是定义在上的奇函数,当时, (1)求的值; (2)当时,求的解析式;
已知集合, 求:(1);(2)
已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率. (Ⅰ)求椭圆的标准方程; (Ⅱ)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.
已知数列的首项为,对任意的,定义. (Ⅰ) 若, (i)求的值和数列的通项公式; (ii)求数列的前项和; (Ⅱ)若,且,求数列的前项的和.
已知在四棱锥中,,,,分别是的中点. (Ⅰ)求证; (Ⅱ)求证; (Ⅲ)若,求二面角的大小.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号