某高中数学竞赛培训在某学段共开设有初等代数、平面几何、初等数论和微积分初步共四门课程,要求初等数论、平面几何都要合格,且初等代数和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格.现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同(见下表),且每一门课程是否合格相互独立.
(Ⅰ)求甲同学取得参加数学竞赛复赛的资格的概率;
(Ⅱ)记表示三位同学中取得参加数学竞赛复赛的资格的人数,求
的分布列及期望
.
若函数为定义域
上的单调函数,且存在区间
(其中
,使得当
时,
的取值范围恰为
,则称函数
是
上的正函数,区间
叫做函数的等域区间.
已知是
上的正函数,求
的等域区间;
试探求是否存在,使得函数
是
上的正函数?若存在,请求出实数
的取值范围;若不存在,请说明理由.
已知函数,恒过定点
.
(1)求实数;
(2)在(1)的条件下,将函数的图象向下平移1个单位,再向左平移
个单位后得到函数
,设函数
的反函数为
,直接写出
的解析式;
(3)对于定义在上的函数
,若在其定义域内,不等式
恒成立,求实数
的取值范围.
一种放射性元素,最初的质量为,按每年
衰减.
(1)求年后,这种放射性元素的质量
与
的函数关系式;
(2)求这种放射性元素的半衰期(质量变为原来的时所经历的时间).(
)
已知集合,集合
.
(1)若,求
;
(2)若,求
的取值范围.
设函数
(Ⅰ)设,
,证明:
在区间
内存在唯一的零点;
(Ⅱ)设,若对任意
,有
,求
的取值范围