如图,在平面直角坐标系中,点M是第一象限内一点,过M的直线分别交x轴,y轴的正半轴于A,B两点,且M是AB的中点.以OM为直径的⊙P分别交x轴,y轴于C,D两点,交直线AB于点E(位于点M右下方),连结DE交OM于点K.
(1)若点M的坐标为(3,4),
①求A,B两点的坐标;
②求ME的长.
(2)若,求∠OBA的度数.
(3)设tan∠OBA=x(0<x<1),,直接写出y关于x的函数解析式.
如图,在▱ABCD中,O是对角线BD的中点,过O点的一条直线分别与BC相交于E,与AD相交于F,求证:四边形AECF是平行四边形.
求代数式÷(
﹣
)的值,其中x=
+1.
已知,在矩形ABCD中,AB=6,BC=8,将矩形ABCD绕点D按顺时针方向旋转,得到矩形A′B′C′D′,直线DA′,B′C′分别与直线BC相交于点P,Q.
(1)①如图1,当矩形A′B′C′D的顶点B′落在射线DC上时 ;
②如图2,当矩形A′B′C′D的顶点B′落在线段BC的延长线上时,DP= ;
(2)①如图3,当点P位于线段BC上时,求证:DP=PQ;
②在矩形ABCD旋转过程中(旋转角0°<α≤90°),请直接写出BP=BQ时,CP的长: .
(3)在矩形ABCD旋转过程中(旋转角45°<α≤180°),以点D,B′,P,Q为顶点的四边形能否成为平行四边形?如果能,请直接写出此时CP的长(或CP的取值范围);如果不能,请简要说明理由.
如图,已知两条直线a∥b,直线a、b间的距离为h,点M、N在直线a上,MN=x;点P在直线b上,并且x+h=40.
(1)记△PMN的面积为S,
①求S与x的函数关系,并求出MN的长为多少时△PMN的面积最大?最大面积是多少?
②当△PMN的面积最大时,能求出∠PMN的正切值吗?为什么?
(2)请你用尺规作图的方法确定△PMN的周长最小时点P的位置(要求不写作法,但保留作图痕迹);并判断△PMN的形状;
(3)请你在(2)②中得到的△PMN内求一点P,使得AP+AM+AN的和最小,求出AP+AM+AN和的最小值.
在学统计知识时,老师留的作业是:“请联系自己身边的事物,用所学的统计知识编制一道统计题.”小明就以他们小区的超市每天卖面包的情景编制了如下题目:
某小区超市一段时间每天订购80个面包进行销售,每售出1个面包获利润0.5元,未售出的每个专损0.3元.
(1)若今后每天售出的面包个数用x(0<x≤80)表示,每天销售面包的利润用y(元)表示,写出y与x的函数关系式;
(2)小明连续m天对该超市的面包销量进行统计,并制成了频数分别直方图(每个组距包含左边的数,但不包含右边的数)和扇形统计图,如图1、图2所示,请根据两图提供的信息计算在m天内日销售利润少于32元的天数;
(3)如图(2)中m天内日销售面包个数在70≤x<80这个组内的销售情况如下表:
销售量/个 |
70 |
72 |
73 |
75 |
78 |
79 |
天数 |
1 |
2 |
3 |
4 |
3 |
2 |
请计算该组内平均每天销售面包的个数.