如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:
(1)FC=AD;
(2)AB=BC+AD.
如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.
(1)平行四边形有 _________ 条面积等分线;
(2)如图,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC<S△ACD,过点A画出四边形ABCD的面积等分线,并写出理由 _________ .
提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC与点E,求证:PB=PE
分析问题:学生甲:如图1,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N通过证明两三角形全等,进而证明两条线段相等.
学生乙:连接DP,如图2,很容易证明PD=PB,然后再通过“等角对等边”证明PE=PD,就可以证明PB=PE了.
解决问题:请你选择上述一种方法给予证明.
问题延伸:如图3,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,PB=PE还成立吗?若成立,请证明;若不成立,请说明理由.
如表,给出A、B两种上网宽带的收费方式:
收费方式 |
月使用费/元 |
包月上网时间/小时 |
超时费/(元/分) |
A |
30 |
20 |
0.05 |
B |
60 |
不限时 |
假设月上网时间为x小时,方式A、B的收费方式分别是yA(元)、yB(元).
(1)请写出yA、yB分别与x的函数关系式,并写出自变量的范围(注意结果要化简);
(2)在给出的坐标系中画出这两个函数的图象;
(3)结合图象与解析式,填空:
当上网时间x的取值范围是 _________ 时,选择方式A省钱;
当上网时间x的取值范围是 _________ 时,选择方式B省钱.
如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AM∥BD,交CB的延长线于点M.
(1)求证:△ADE≌△CBF;
(2)若四边形是BEDF菱形,AD=3,∠ABD=30°,求四边形AMBD的面积.
为了提高农民收入,村干部带领村民自愿投资办起了一个养鸡场,办场时买来的3000只小鸡,经过一段时间的精心饲养,可以出售了.下表是从中抽取的100只鸡出售时质量的统计数据.
质量 |
1.0 |
1.2 |
1.5 |
1.8 |
2.0 |
频数 |
11 |
23 |
32 |
24 |
10 |
(1)写出抽取的这100只鸡出售时质量的众数与中位数,并求这出售的100只鸡的平均质量是多少?(结果保留小数点后一位)
(2)根据市场价格,利润是4元/kg,请你估计这3000只鸡全部出售,可以获得的利润是多少元?
(3)本题(2)中用到的统计思想是什么?