游客
题文

在数学的学习过程中,我们经常用以下的探索过程解决相关问题.
数学问题:三角形有3个顶点,如果在它的内部再画个点,并以这个点为顶点画三角形,那么可以剪得多少个这样的三角形?

探索规律:为了解决这个问题,我们可以从等具体的、简单的情形入手,探索最多可以剪得的三角形个数的变化规律.
(1)填表:当三角形内有4个点时,把表格补充完整;
(2)你发现的变化规律是:    
(3)猜想:当三角形内点的个数为时,最多可以剪得        个三角形;
像这样通过对简单情形的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.
问题解决:请你尝试用归纳的方法探索的和是多少?

科目 数学   题型 解答题   难度 中等
知识点: 规律型:图形的变化类
登录免费查看答案和解析
相关试题

如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据:≈1.732)

质地均匀的小正方体,六个面分别有数字“1”、“2”、“3”、“4”、“5”、“6”,同时投掷两枚,观察朝上一面的数字.
(1)求数字“1”出现的概率;
(2)求两个数字之和为偶数的概率.

如图,四边形ABCD、BEFG均为正方形,连接AG、CE.

(1)求证:AG=CE;
(2)求证:AG⊥CE.

先化简,再求值:,其中

如图,己知抛物线y=k(x+1)(x-3k)(且k>0)与x轴分别交于A、B两点,A点在B点左边,与Y轴交于C点,连接BC,过A点作AE∥CB交抛物线于E点,0为坐标原点.

(1)用k表示点C的坐标(0,);
(2)若k=1,连接BE,
①求出点E的坐标;
②在x轴上找点P,使以P、B、C为顶点的三角形与△ABE相似,求出P点坐标;
(3)若在直线AE上存在唯一的一点Q,连接OQ、BQ,使OQ⊥BQ,求k的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号