如图,直线与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线
与x轴交于另一点A,线段BC与抛物线的对称轴l相交于点D,设抛物线的顶点为P,连接AD,线段AD与y轴相交于点E.
(1)求该抛物线的解析式及对称轴;
(2)连结AP,请在y轴正半轴上找一点Q,使Q、C、D为顶点的三角形与△ADP全等,并求出点Q的坐标.将∠CED绕点E顺时针旋转,边EC旋转后与线段BC相交于点M,边ED旋转后与对称轴l相交于点N,若2DM=DN,求点M的坐标.
解方程和不等式组:
(1);
(2).
先化简,再求值:,其中
.
如图,在平面直角坐标系中,抛物线与
轴交于
两点,与
轴交于点
,且点
的坐标为
点
在这条抛物线上,且不与
两点重合,过点
作
轴的垂线与射线
交于点
,以
为边作
使
点
在点
的下方,且
设线段
的长度为
,点
的横坐标为
.
(1)求这条抛物线所对应的函数表达式;
(2)求与
之间的函数关系式;
(3)当的边
被
轴平分时,求
的值;
(4)以为边作等腰直角三角形
,当
时,直接写出点
落在
的边上时
的值.
如图,在等边中,
于点
,点
在边
上运动,过点
作
与边
交于点
,连结
,以
为邻边作□
,设□
与
重叠部分图形的面积为
,线段
的长为
(1)求线段的长(用含
的代数式表示);
(2)当四边形为菱形时,求
的值;
(3)求与
之间的函数关系式;
(4)设点关于直线
的对称点为点
,当线段
的垂直平分线与直线
相交时,设其交点为
,当点
与点
位于直线
同侧(不包括点
在直线
上)时,直接写出
的取值范围.
在矩形中,已知
,在边
上取点
,使
,连结
,过点
作
,与边
或其延长线交于点
.
猜想:如图①,当点在边
上时,线段
与
的大小关系为.
探究:如图②,当点在边
的延长线上时,
与边
交于点
.判断线段
与
的大小关系,并加以证明.
应用:如图②,若利用探究得到的结论,求线段
的长.