如图所示,AB为水平轨道,A、B间距离s=2m,BC是半径为R=0.40m的竖直半圆形光滑轨道,B为两轨道的连接点,C为轨道的最高点。一小物块以v0=6m/s的初速度从A点出发,经过B点滑上半圆形光滑轨道,恰能经过轨道的最高点,之后落回到水平轨道AB上的D点处。g取10m/s2,求:
(1)落点D到B点间的距离;
(2)小物块经过B点时的速度大小;
(3)小物块与水平轨道AB间的动摩擦因数。
如图所示,水平台面AB距地面的高度h=0.8m.有一滑块从A点以v0=6m/s的初速度在台面上做匀变速直线运动,滑块与平台间的动摩擦因数μ=0.25.滑块运动到平台边缘的B点后水平飞出。已知AB=2.2m。不计空气阻力,g取10m/s2。求:
(1)滑块从B点飞出时的速度大小v;
(2)滑块落地点到平台边缘的距离d。
如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合。转台以一定角速度ω匀速转动,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO′之间的夹角θ为60°.重力加速度大小为g。若ω=ω0,小物块受到的摩擦力恰好为零,求ω0;
地球的质量M=5.98×1024kg,地球半径R=6370km,引力常量G=6.67×10-11N·m2/kg2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s,求:
(1)用题中的已知量表示此卫星距地面高度h的表达式
(2)此高度的数值为多少?(保留3位有效数字)
如图所示,质量m1=0.3kg的小车静止在光滑的水平面上,车长L=1.5m,距车的右端d=1.0m处有一固定的竖直挡板P,现有质量为m2=0.2kg可视为质点的物块,以水平向右的速度v0=2m/s从左端滑上小车,物块与车面间的动摩擦因数μ=0.2,取g=10m/s2。
⑴若物块由左端滑上小车开始计时,求经过多长时间小车与挡板P相撞。
⑵若小车与挡板碰撞将以原速率反弹,最终小物块在车面上某处与小车保持相对静止,求此处与车左端的距离L。
如图(a)所示,木板OA可绕轴O在竖直平面内转动,某研究小组利用此装置探索物块在方向始终平行于斜面、大小为F=8N的力作用下加速度与斜面倾角的关系。已知物块的质量m=1kg,通过DIS实验,得到如图(b)所示的加速度与斜面倾角的关系图线。图(b)中图线在的范围内与θ轴重合,且
。假定物块与木板间的最大静摩擦力等于滑动摩擦力。(取sin37°=0.6,cos37°=0.8,g=10m/s2)
(1)图(b)中图线与纵坐标交点ao多大?
(2)写出能求出θ2的数学表达式。