如图所示,质量为m,电荷量为q的粒子,以初速度v垂直进入宽度为L的匀强磁场中,粒子只受洛伦兹力作用,离开磁场的速度方向偏离入射方向 θ=" π/6" 。求:
(1)带电粒子在磁场中做匀速圆周运动的轨道半径r 。
(2)磁感应强度B的大小。
(3)带电粒子在磁场中的运动时间t .
在倾角为α的光滑斜面上,置一通有电流为I,长为L,质量为m的导体棒,如图所示,试求:欲使棒静止在斜面上,外加匀强磁场的磁感应强度B的最小值和方向
欲使棒静止在斜面上且对斜面无压力,应加匀强磁场B的最小值和方向
如图所示,一导线弯成半径为a的半圆形闭合回路。虚线MN右侧有磁感应强度为B的匀强磁场。方向垂直于回路所在的平面。回路以速度v向右匀速进入磁场,直径CD始终与MN垂直。从D点到达边界开始到C点进入磁场为止,求此过程中:感应电流方向
感应电动势最大值
感应电动势平均值
如图所示,固定于同一条竖直线上的A、B是两个带等量异种电荷的点电荷,电荷量分别为+Q和-Q,A、B相距为2d,MN是竖直放置的光滑绝缘细杆,另有一个穿过细杆的带电小球p,质量为m、电荷量为+q(可视为点电荷,不影响电场的分布),现将小球p从与点电荷A等高的C处由静止开始释放,小球p向下运动到距C点距离为d的O点时,速度为v,已知MN与AB之间的距离为d,静电力常量为k,重力加速度为g,求:C、O间的电势差UCO;
O点处的电场强度E的大小;
小球p经过与点电荷B等高的D点时的速度。
如图所示,BCDG是光滑绝缘的3/4圆形轨道,位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中,现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g。
若滑块从水平轨道上距离B点s=3R的A点由静止释放,求滑块到达与圆心O等高的C点时,受到轨道的作用力大小;
改变s的大小,使滑块恰好始终沿轨道滑行,且从G点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小。
如图所示,水平放置的平行板电容器,与某一电源相连,它的极板长L=0.4m,两板间距离d=4×10-8m,有一束由相同带电微粒组成的粒子流,以相同的速度,从两板中央平行极板射入,开关S闭合前,两板不带电,由于重力作用微粒能落到下板的正中央,已知微粒质量为m=4×10-8kg,电荷量q=1×10-6C,(g取m/s2)求:
微粒入射速度
为多少?
为使微粒能从平行板电容器的右边射出电场,电容器的上板应与电源的正极还是负极相连?所加的电压U应取什么范围?