如图, 与 相切于点 ,过点 作 ,垂足为 ,交 于点 .连接 , ,并延长 交 于点 ,与 的延长线交于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的值.
杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类: :优秀; :良好; :一般; :较差.并将调查结果绘制成以下两幅不完整的统计图.
请根据统计图解答下列问题:
(1)本次调查中,杨老师一共调查了 名学生,其中 类女生有 名, 类男生有 名;
(2)补全上面的条形统计图和扇形统计图;
(3)在此次调查中,小平属于 类.为了进步,她请杨老师从被调查的 类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率.
如图, 的对角线 , 相交于点 . , 是 上的两点,并且 ,连接 , .
(1)求证: ;
(2)若 ,连接 , ,判断四边形 的形状,并说明理由.
现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整)
步数 |
频数 |
频率 |
|
8 |
|
|
15 |
0.3 |
|
12 |
|
|
|
0.2 |
|
3 |
0.06 |
|
|
0.04 |
请根据以上信息,解答下列问题:
(1)写出 , , , 的值并补全频数分布直方图;
(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步)的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.
某周日上午 小宇从家出发,乘车1小时到达某活动中心参加实践活动. 时他在活动中心接到爸爸的电话,因急事要求他在 前回到家,他即刻按照来活动中心时的路线,以5千米 小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家 (小时)后,到达离家 (千米)的地方,图中折线 表示 与 之间的函数关系.
(1)活动中心与小宇家相距 千米,小宇在活动中心活动时间为 小时,他从活动中心返家时,步行用了 小时;
(2)求线段 所表示的 (千米)与 (小时)之间的函数关系式(不必写出 所表示的范围);
(3)根据上述情况(不考虑其他因素),请判断小宇是否能在 前回到家,并说明理由.