已知,抛物线与x轴交于
和
两点,与y轴交于
。
求这条抛物线的解析式和抛物线顶点M的坐标
求四边形ABMC的面积;
在对称轴的右侧的抛物线上是否存在点P,使
为直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,请说明理由
如图,已知抛物线与
轴交于点
,与
轴交与A、B两点(点A在点B的左侧),且OA=1,OC=2
求抛物线的解析式及对称轴
点E是抛物线在第一象限内的一点,且
,求点E的坐标;
在抛物线的对称轴上,是否存在点P,使得
为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。
已知:如图①,在中,
,
,
,点
由
出发沿
方向向点
匀速运动,速度为1cm/s;点
由
出发沿
方向向点
匀速运动,速度为2cm/s;连接
.若设运动的时间为
(
),解答下列问题
当
为何值时,
?
设
的面积为
(
),求
与
之间的函数关系式;
是否存在某一时刻
,使线段
恰好把
的周长和面积同时平分?若存在,求出此时
的值;若不存在,说明理由;
如图②,连接
,并把
沿
翻折,得到四边形
,那么是否存在某一时刻
,使四边形
为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,根据销售经验,销售单价每提高1元,销售量相应减少10个设销售单价提高x元(x为正整数),写出每月销售量y(个)与x(元)之间的函数关系式;
假设这种篮球每月的销售利润为w元,试写出w与x之间的函数关系式,并通过配方讨论,当销售单价定为多少元时,每月销售这种篮球的利润最大,最大利润为多少元?
已知关于x的一元二次方程x2 + mx +n+1=0的一根为2.求n关于m的关系式;
试说明:关于y的一元二次方程y2 +my+n=0总有两个不相等的实数根。