心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30,女20),给所有同学几何体和代数题各一题,让各位同学自由选择一道题进行解答,选题情况如下表(单位:人)
|
几何题 |
代数题 |
总计 |
男同学 |
22 |
8 |
30 |
女同学 |
8 |
12 |
20 |
总计 |
30 |
20 |
50 |
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)经过多次测试后,甲每次解答一道几何题所用的时间在5-7分钟,乙每次解答一道几何题所用的时间在6-8分钟,现甲,乙各解同一道几何题,求乙比甲先解答完的概率;
(3)现从选择做几何题的8名女生中任意抽取两人对她们的大题情况进行全程研究,记甲、乙两女生被抽到的人数为,求
的分布列及数学期望
.
附表及公式:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(Ⅰ)求函数
图像的对称轴方程;
(Ⅱ)设的三个角
所对的边分别是
,且
,
成公差大于
的等差数列,求的值.
过直线上的动点
作抛物线
的两条切线
,其中
为切点.
⑴若切线的斜率分别为
,求证:
为定值;
⑵求证:直线恒过定点.
(本小题满分10分)
某校高一、高二两个年级进行乒乓球对抗赛,每个年级选出名学生组成代表队,比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,但不能参加两盘单打比赛.若每盘比赛中高一、高二获胜的概率分别为
.
⑴按比赛规则,高一年级代表队可以派出多少种不同的出场阵容?
⑵若单打获胜得分,双打获胜得
分,求高一年级得分
的概率发布列和数学期望.
选修4—5:不等式选讲
已知正数a,b,c满足,求证:
.
选修4-4:坐标系与参数方程(本小题满分10分)
在极坐标系中,已知曲线:
与曲线
:
交于不同的两点
,求
的值.