在直角坐标系中,A (3,0),B(0,3),C
(1)若^
,求
的值;
(2)与
能否共线?说明理由。
已知函数f (x)=lnx,g(x)=ex.
(I)若函数φ (x) = f (x)-,求函数φ (x)的单调区间;
(Ⅱ)设直线l为函数的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.
张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为
,
.
(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;
(Ⅱ)若走L2路线,求遇到红灯次数的数学期望;
(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你
帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.
最近,某人准备将手中的10万块钱投资理财,现有二种方案:第一种方案:将10万块钱全部用来买股票,据分析预测:投资股市一年可能获利40%,也可能亏损20%(只有这两种可能),且获利的概率为.第二种方案:将10万块钱全部用来买基金,据分析预测:投资基金一年可能获利20%,也可能损失10%,也可能不赔不赚,且三种情况发生的概率分别为
.针对以上两种投资方案,请你为选择一种合理的理财方法,并说明理由.
某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取件产品作为样本称出它们的重量(单位:克),重量值落在
的产品为合格品,否则为不合格品.图
是甲流水线样本的频率分布直方图,表
是乙流水线样本频数分布表.
(Ⅰ) 若以频率作为概率,试估计从甲流水线上任取件产品,求其中合格品的件数
的数学期望;
(Ⅱ)从乙流水线样本的不合格品中任意取件,求其中超过合格品重量的件数
的分布列;
(Ⅲ)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关” .
甲流水线 |
乙流水线 |
合计 |
|
合格品 |
![]() |
![]() |
|
不合格品 |
![]() |
![]() |
|
合 计 |
![]() |
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
附:下面的临界值表供参考:
(参考公式:,其中
)