设函数,其中
,曲线
恒与
轴相切于坐标原点.
(1)求常数的值;
(2)当时,关于
的不等式
恒成立,求实数
的取值范围;
(3)求证:.
已知函数f(x)=ln(1+x)-.
(1)求f(x)的极小值; (2)若a、b>0,求证:lna-lnb≥1-.
已知甲盒内有大小相同的1个红球和3个黑球, 乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为黑球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率;
(Ⅲ)设为取出的4个球中红球的个数,求
的分布列和数学期望.
已知是定义在
上的增函数,且对任意的
都满足
.
(Ⅰ)求的值;(Ⅱ)若
,证明
;
(Ⅲ)若,解不等式
.
设命题函数
是
上的减函数,命题
函数
,
的值域为
,若“
且
”为假命题,“
或
”为真命题,求实数
的取值范围.
设椭圆C:过点
, 且离心率
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过右焦点的动直线交椭圆于点
,设椭圆的左顶点为
连接
且交直线
于
,若以MN为直径的圆恒过右焦点F,求
的值