给出下列四个命题:
(1)命题“若,则tanα=1”的逆否命题为假命题;
(2)命题p:∀x∈R,sinx≤1.则¬p:∃x0∈R,使sinx0>1;
(3)“”是“函数y=sin(2x+ϕ)为偶函数”的充要条件;
(4)命题p:“∃x0∈R,使”;命题q:“若sinα>sinβ,则α>β”,那么(¬p)∧q为真命题.
其中正确的个数是()
A.1 | B.2 | C.3 | D.4 |
已知函数y=Asin(ωx+φ)+m的最大值是4,最小值是0,最小正周期,直线x=
是其图象的一条对称轴,则下列各式中符合条件的解析式是()
A.y=4sin(4x+![]() |
B.y=2sin(4x+![]() |
C.y=2sin(4x+![]() |
D.y=2sin(2x+![]() |
函数f(x)=ln(x﹣)的图象大致是()
A.![]() |
B.![]() |
C.![]() |
D.![]() |
下列函数中,既是奇函数又在(﹣∞+∞)上单调递增的是()
A.y=﹣![]() |
B.y=sinx |
C.y=x![]() |
D.y=ln|x| |
如图是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:
①﹣2是函数y=f(x)的极值点;
②1是函数y=f(x)的最小值点;
③y=f(x)在x=0处切线的斜率小于零;
④y=f(x)=在区间(﹣2,2)上单调递增.
则正确命题的序号是()
A.①④ | B.②④ | C.③④ | D.②③ |