游客
题文

如图,一次函数y=kx+b的图象分别与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB

(1)求函数y=kx+by=ax的表达式;

(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.

科目 数学   题型 解答题   难度 中等
知识点: 待定系数法求反比例函数解析式 反比例函数与一次函数的交点问题 待定系数法求一次函数解析式
登录免费查看答案和解析
相关试题

(1)解方程:
(2)解不等式组

计算:
(1)(2)

如图,已知抛物线经过点B(-1,0)、C(3,0),交y轴于点A,

(1)求此抛物线的解析式;
(2)抛物线第一象限上有一动点M,过点M作MN⊥轴,垂足为N,请求出的最大值,及此时点M坐标;
(3)抛物线顶点为K,KI⊥x轴于I点,一块三角板直角顶点P在线段KI上滑动,且一直角边过A点,另一直角边与x轴交于Q(m,0),请求出实数m的变化范围,并说明理由.

问题提出:平面内不在同一条直线上的三点确定一个圆.那么平面内的四点(任意三点均不在同一直线上),能否在同一个圆呢?
初步思考:设不在同一条直线上的三点A、B、C确定的圆为⊙O.
⑴当C、D在线段AB的同侧时,

如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是
如图②,若点D在⊙O内,此时有∠ACB∠ADB;
如图③,若点D在⊙O外,此时有∠ACB∠ADB.(填“=”、“>”或“<”);
由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:
类比学习:(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.

如图④,此时有
如图⑤,此时有
如图⑥,此时有
由上面的探究,请用文字语言直接写出A、B、C、D四点在同一个圆上的条件:

拓展延伸:(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线?
已知:如图,AB是⊙O的直径,点C在⊙O上.
求作:CN⊥AB.
作法:①连接CA, CB;
②在上任取异于B、C的一点D,连接DA,DB;
③DA与CB相交于E点,延长AC、BD,交于F点;
④连接F、E并延长,交直径AB于M;
⑤连接D、M并延长,交⊙O于N.连接CN. 则CN⊥AB.
请按上述作法在图④中作图,并说明CN⊥AB的理由.(提示:可以利用(2)中的结论)

沿海开发公司准备投资开发A、B两种新产品,通过市场调研发现:
(1)若单独投资A种产品,则所获利润yA(万元)与投资金额x(万元)之间满足正比例函数关系:yA=kx;
(2)若单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间满足二次函数关系:yB=ax2+bx.
(3)根据公司信息部的报告,yA,yB(万元)与投资金额x(万元)的部分对应值如下表所示:

(1)填空:yA=;yB=
(2)若公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为W(万元),试写出W与某种产品的投资金额x(万元)之间的函数关系式;
(3)请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号