游客
题文

如图①,在RtΔABC中,C=90°AB=10BC=6,点P从点A出发,沿折线AB-BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒43个单位长度的速度运动,PQ两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.

(1)求线段AQ的长;(用含t的代数式表示)

(2)连结PQ,当PQΔABC的一边平行时,求t的值;

(3)如图②,过点PPEAC于点E,以PEEQ为邻边作矩形PEQF,点DAC的中点,连结DF.设矩形PEQFΔABC重叠部分图形的面积为S.①当点Q在线段CD上运动时,求St之间的函数关系式;②直接写出DF将矩形PEQF分成两部分的面积比为1:2t的值.

科目 数学   题型 解答题   难度 中等
知识点: 矩形的性质 二次函数的应用 直角三角形的性质
登录免费查看答案和解析
相关试题

如下4个图中,不同的矩形ABCD,若把D点沿AE对折,使D点与BC上的F点重合;

(1)图①中,若DE︰EC=2︰1,求证:△ABF∽△AFE∽△FCE;并计算BF︰FC;
(2)图②中若DE︰EC=3︰1,计算BF︰FC=;图③中若DE︰EC=4︰1,计算BF︰FC=
(3)图④中若DE︰EC=︰1,猜想BF︰FC=;并证明你的结论

如图,已知双曲线经过点D(6,1),点C是双曲线第三象限分支上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.

(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.

为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图。按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入。(其中AB=9m,BC=0.5m)为标明限高,请你根据该图计算CE。(精确到0.1m)(参考数值

如图,梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD相交于点M。

(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.

化简求值:·,其中

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号