如图是由边长为1的小正方形组成的网格,每个小正方形的顶点叫做格点,点,,,均在格点上,在网格中将点按下列步骤移动:
第一步:点绕点顺时针旋转得到点;
第二步:点绕点顺时针旋转得到点;
第三步:点绕点顺时针旋转回到点.
(1)请用圆规画出点经过的路径;
(2)所画图形是 对称图形;
(3)求所画图形的周长(结果保留.
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC=AB;
(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.
已知平行四边形ABCD中,对角线AC和BD相交于点O,AC=10,
BD=8.
(1)若AC⊥BD,试求四边形ABCD的面积 ;
(2)若AC与BD的夹角∠AOD=,求四边形ABCD的面积;
(3)试讨论:若把题目中“平行四边形ABCD”改为“四边形ABCD”,且∠AOD=
AC=,BD=
,试求四边形ABCD的面积(用含
,
,
的代数式表示).
(1)(本小题满分4分)—
+
(2)(本小题满分6分)已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且
x=1时,y=3;x=-1时,y=1. 求x=-时,y的值.
如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,
FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.
(1)证明:AF平分∠BAC;
(2)证明:BF=FD;
(3)若EF=4,DE=3,求AD的长.
某蔬菜公司收购到某种蔬菜104吨,准备加工后上市销售. 该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨. 现计划用16天正好完成加工任务,则该公司应安排几天精加工,几天粗加工?