游客
题文

我省某苹果基地销售优质苹果,该基地对需要送货且购买量在 2000 kg - 5000 kg (含 2000 kg 5000 kg ) 的客户有两种销售方案(客户只能选择其中一种方案) :

方案 A :每千克5.8元,由基地免费送货.

方案 B :每千克5元,客户需支付运费2000元.

(1)请分别写出按方案 A ,方案 B 购买这种苹果的应付款 y (元 ) 与购买量 x ( kg ) 之间的函数表达式;

(2)求购买量 x 在什么范围时,选用方案 A 比方案 B 付款少;

(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.

科目 数学   题型 解答题   难度 中等
知识点: 一元一次不等式的应用 一次函数的应用
登录免费查看答案和解析
相关试题

先化简,再求值:,其中

二次函数y=-x2+4x的顶点M,与x轴交于O点和A点.直线y=-2x向上平移 m个单位交直线OM于点E,交x轴于点C,交y轴于点D.

(1)当△EOC的面积等于△AOM面积的一半,求m的值.
(2)已知点P是二次函数y=-x2+4x图象在y轴右侧部分上的一个动点,若∠PCD=900且△PCD与△OCD
相似,求P点坐标.

如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.
可证:AE⊥BF;

(1)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM,如图2,若AM和BF相交
于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.
(2)将△BCF沿BF对折,得到△BPF,如图3,延长FP交BA的延长线于点Q,求sin∠BQP的值;

如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3),双曲线的图像经过BC的中点D,且与AB交于点E,连接DE。若点F是边上一点,且△FBC∽△DEB,求直线FB的解析式.

如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AC的延长线相交于点F,且AC=8,tan∠BDC=.求线段CF的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号