游客
题文

综合与实践

问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2ABEAB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AMDE的位置关系.

探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:

证明:BE=ABAE=2AB

AD=2ABAD=AE

四边形ABCD是矩形,AD//BC

EMDM=EBAB.(依据1)

BE=ABEMDM=1EM=DM

AMΔADEDE边上的中线,

AD=AEAMDE.(依据2)

AM垂直平分DE

反思交流:

(1)①上述证明过程中的“依据1”“依据2”分别是指什么?

②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;

(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;

探索发现:

(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.

科目 数学   题型 解答题   难度 中等
知识点: 矩形的性质 全等三角形的判定与性质 正方形的性质 线段垂直平分线逆定理 四边形综合题
登录免费查看答案和解析
相关试题

如图,在△ABC中,∠BAC=120°,P为△ABC内一点,求证:PA+PB+PC>AB+AC.

我市劲威乡A、B两村盛产柑橘,A村有柑橘200吨,B村有柑橘300吨,现将这些柑橘运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑橘重量为x吨,A、B两村运往两仓库的柑橘运输费用分别为yA元和yB元.
请填写下表

求出yA、yB与x之间的函数解析式;
试讨论A、B两村中,哪个村的运费最少;
考虑B村的经济承受能力,B村的柑橘运费不得超过4830元,在这种情况下,请问怎样调运才能使两村运费之和最小?求出这个最小值.

某人从离家18千米的地方返回,他离家的距离s(千米)与时间t(分钟)的函数图象如图所示:

求线段AB的解析式
求此人回家用了多长时间?

已知正方形ABCD的边长是2,E是CD的中点,动点P从点A出发,沿A→B→C→E运动,到达E点即停止运动,若点P经过的路程为x,△APE的面积记为y,试求出y与x之间的函数解析式,并求出当y=时,x的值.

如图△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:

AE=CD.
若AC=12cm,求BD的长

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号