综合与实践
问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形中,,是延长线上一点,且,连接,交于点,以为一边在的左下方作正方形,连接.试判断线段与的位置关系.
探究展示:勤奋小组发现,垂直平分,并展示了如下的证明方法:
证明:,.
,.
四边形是矩形,.
.(依据
,..
即是的边上的中线,
又,.(依据
垂直平分.
反思交流:
(1)①上述证明过程中的“依据1”“依据2”分别是指什么?
②试判断图1中的点是否在线段的垂直平分线上,请直接回答,不必证明;
(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接,以为一边在的左下方作正方形,发现点在线段的垂直平分线上,请你给出证明;
探索发现:
(3)如图3,连接,以为一边在的右上方作正方形,可以发现点,点都在线段的垂直平分线上,除此之外,请观察矩形和正方形的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.
如图,在△ABC中,∠BAC=120°,P为△ABC内一点,求证:PA+PB+PC>AB+AC.
我市劲威乡A、B两村盛产柑橘,A村有柑橘200吨,B村有柑橘300吨,现将这些柑橘运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑橘重量为x吨,A、B两村运往两仓库的柑橘运输费用分别为yA元和yB元.请填写下表
求出yA、yB与x之间的函数解析式;
试讨论A、B两村中,哪个村的运费最少;
考虑B村的经济承受能力,B村的柑橘运费不得超过4830元,在这种情况下,请问怎样调运才能使两村运费之和最小?求出这个最小值.
某人从离家18千米的地方返回,他离家的距离s(千米)与时间t(分钟)的函数图象如图所示:求线段AB的解析式
求此人回家用了多长时间?
已知正方形ABCD的边长是2,E是CD的中点,动点P从点A出发,沿A→B→C→E运动,到达E点即停止运动,若点P经过的路程为x,△APE的面积记为y,试求出y与x之间的函数解析式,并求出当y=时,x的值.
如图△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:AE=CD.
若AC=12cm,求BD的长