如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.
如图,在中,
,
,将
绕点
沿逆时针方向旋转
得到
.
(1)线段的长是,
的度数是;
(2)连结,求证:四边形
是平行四边形;
计算:(本小题满分6分)
(1);
(2)
如图①,中,
,
.它的顶点
的坐标为
,顶点
的坐标为
,点
从点
出发,沿
的方向匀速运动,同时点
从点
出发,沿
轴正方向以相同速度运动,当点
到达点
时,两点同时停止运动,设运动的时间为
秒.
(1)求的度数.(直接写出结果)
(2)当点在
上运动时,
的面积
与时间
(秒)之间的函数图象为抛物线的一部分(如图②),求点
的运动速度.
(3)求题(2)中面积与时间
之间的函数关系式,及面积
取最大值时点
的坐标.
(4)如果点保持题(2)中的速度不变,当t取何值时,PO=PQ,请说明理由.
如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是线段BC上一点,以AE为边在直线MN的上方作正方形AEFG
连结GD,求证△ADG≌△ABE;
如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=1,BC=2,E是线段BC上一动点(不含端点B,C ),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当E由B向C运动时,∠FCN的大小是否保持不变,若∠FCN的大小不变,求tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.
在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).
(1)设初三(1)班有名同学,则这批树苗有多少棵?(用含
的代数式表示).
(2) 初三(1)班至少有多少名同学?最多有多少名?