游客
题文

如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30DM=10

(1)在旋转过程中,

①当ADM三点在同一直线上时,求AM的长.

②当ADM三点为同一直角三角形的顶点时,求AM的长.

(2)若摆动臂AD顺时针旋转90°,点D的位置由ΔABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时AD2C=135°CD2=60,求BD2的长.

科目 数学   题型 解答题   难度 中等
知识点: 旋转的性质 全等三角形的判定与性质 勾股定理 等腰直角三角形 三角形综合题
登录免费查看答案和解析
相关试题

(本题10分)如图,E为正方形ABCD对角线BD上的一点,且BE=BC=1.

(1)求∠DCE的度数;
(2)点P在EC上,作PM⊥BD于M,PN⊥BC于N,求PM+PN的值.

(本题9分)喝绿茶前需要烧水和泡茶两个工序,即需要将电热水壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度 y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.

(1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围;
(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?

(本题8分)设点A的坐标(x,y),其中横坐标x可取-1,2,纵坐标y可取-1,1,2。
(1)求出点A的坐标的所有等可能结果(用树形图或列表法求解);
(2)求点A与点B(1,-1)关于原点对称的概率。

(本题5分)为了构建城市立体道路网络,决定修建一条轻轨铁路,为了使工程提前6个月完成,需将原定的工作效率提高25%.原计划完成这项工程需要多少个月?

(本题5分)如图所示,已知BD⊥CD于D,EF⊥CD于F,,其中为锐角,求证:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号