如图,点,,是直线与反比例函数图象的两个交点,轴,垂足为点,已知,连接,,.
(1)求直线的表达式;
(2)和的面积分别为,.求.
自从温州动车开通后,某批发商场的生意一直很火爆。经过统计,商场销售一批衬衫,每天可售出 2000 件,每件盈利 40 元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价 1 元,每天可多售出 200 件.
(1)设每件降价 x 元,每天盈利 y 元,列出 y 与 x 之间的函数关系式;
(2)每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?
在的网格中,画一个格点三角形(三角形的顶点都在虚线的交点上),使得它与
相似但不全等,请画出两种不同相似比的情况.(所画图形不能超出虚线范围)
已知:如图,AC与BD交于点O,AO=CO,BO=DO.求证:AB∥CD
计算:.
已知,如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别为A(8,0),B(8,10),C(0,4),
点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为秒.
(1)求直线BC的解析式;
(2)若动点P在线段OA上移动,当为何值时,四边形OPDC的面积是梯形COAB面积的
?
(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与的函数关系式,并写出自变量
的取值范围。