某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为、、、、,由调查所得数据绘制了如图所示的不完整的统计图表.
类别 |
频率 |
0.35 |
|
0.20 |
|
0.05 |
(1)求本次调查的小型汽车数量及,的值;
(2)补全频数分布直方图;
(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.
二次函数的图象如图所示,根据图象:
(1)求其解析式
(2)观察图像写出>0时
的取值范围
(3)是否存在某直线经过A(1,0)并与该抛物线只有一个公共点?若存在,求出该直线的解析式,若不存在,请说明理由
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,
(1)每轮感染中平均一台电脑会感染几台电脑?
(2)若该病毒得不到有效控制,第3轮感染后,被感染的电脑会不会超过700台?说明理由
根据条件求函数解析式:(6分× 2 = 12分)
(1)已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8),求该抛物线的解析式;
(2)抛物线经过A(1,4)、B(-1,0)、C(-2,7)三点,求抛物线的解析式.
选择适当的方法解下列方程:(4分× 3 = 12分)
(1)
(2)
(3)
在平面直角坐标系中,O为坐标原点,点A坐标为(1,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>1),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.
(1)如图,当C点在x轴上运动时,设AC=x,请用x表示线段AD的长;
(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.
(3)以线段BC为直径作圆,圆心为点F,
①当C点运动到何处时直线EF∥直线BO?此时⊙F和直线BO的位置关系如何?请说明理由.
②G为CD与⊙F的交点,H为直线DF上的一个动点,连结HG、HC,求HG+HC的最小值,并将此最小值用x表示.