游客
题文

某食品厂生产一种半成品食材,成本为2元/千克,每天的产量p(百千克)与销售价格x(元/千克)满足函数关系式p=12x+8,从市场反馈的信息发现,该半成品食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:

销售价格x(元/千克)

2

4

10

市场需求量q(百千克)

12

10

4

已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克.

(1)直接写出qx的函数关系式,并注明自变量x的取值范围;

(2)当每天的产量小于或等于市场需求量时,这种半成品食材能全部售出,而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.

①当每天的半成品食材能全部售出时,求x的取值范围;

②求厂家每天获得的利润y(百元)与销售价格x的函数关系式;

(3)在(2)的条件下,当x  /千克时,利润y有最大值;若要使每天的利润不低于24(百元),并尽可能地减少半成品食材的浪费,则x应定为  /千克.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数的应用 一次函数的应用
登录免费查看答案和解析
相关试题

某电脑公司现有A,B,C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑。希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑。

(1) 写出所有选购方案(利用树状图或列表方法表示);
(2) 如果(1)中各种选购方案被选中的可能性相同,那么B型号电脑被选中的概率是多少?

为了加快城市经济发展,某市准备修建一座横跨南北的大桥.如图10所示,测量队在点A处观测河对岸水边有一点C,测得C在北偏东60°的方向上,沿河岸向东前行30米到达B处,测得C在北偏东45°的方向上,请你根据以上数据帮助该测量队计算出这条河的宽度(结果保留根号)。

如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AB,BD, BC,AC的中点。

(1)求证:四边形EFGH是平行四边形;
(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论。

请画出下图的三视图

计算:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号