某食品厂生产一种半成品食材,成本为2元千克,每天的产量(百千克)与销售价格(元千克)满足函数关系式,从市场反馈的信息发现,该半成品食材每天的市场需求量(百千克)与销售价格(元千克)满足一次函数关系,部分数据如表:
销售价格(元千克) |
2 |
4 |
10 |
|
市场需求量(百千克) |
12 |
10 |
4 |
已知按物价部门规定销售价格不低于2元千克且不高于10元千克.
(1)直接写出与的函数关系式,并注明自变量的取值范围;
(2)当每天的产量小于或等于市场需求量时,这种半成品食材能全部售出,而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.
①当每天的半成品食材能全部售出时,求的取值范围;
②求厂家每天获得的利润(百元)与销售价格的函数关系式;
(3)在(2)的条件下,当为 元千克时,利润有最大值;若要使每天的利润不低于24(百元),并尽可能地减少半成品食材的浪费,则应定为 元千克.
(桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).
(1)求每本文学名著和动漫书各多少元?
(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.
(贵港)已知:△ABC是等腰三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:
(1)如图①,若点P在线段AB上,且AC=,PA=
,则:①线段PB= ,PC= ;
②猜想:,
,
三者之间的数量关系为 ;
(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;
(3)若动点P满足,求
的值.(提示:请利用备用图进行探求)
(贵港)如图,抛物线与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为
.
(1)求抛物线的解析式并写出其顶点坐标;
(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.
①当PA⊥NA,且PA=NA时,求此时点P的坐标;
②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.
(贵港)如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.
(1)若AB=,求
的长;(结果保留π)
(2)求证:四边形ABMC是菱形.
(贵港)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.
问:今年第一季度生产总量是多少台机器?m的值是多少?