阅读下列材料,完成解答:
材料1:国家统计局2月28日发布了2019年国民经济和社会发展统计公报,该公报中的如图发布的是全国“年快递业务量及其增长速度”统计图(如图.
材料月28日,国家邮政局发布的数据显示:受新冠疫情影响,快递业务量快速增长,5月份快递业务量同比增长(如图.某快递业务部门负责人据此估计,2020年全国快递业务量将比2019年增长.
(1)2018年,全国快递业务量是 亿件,比2017年增长了 ;
(2)年,全国快递业务量增长速度的中位数是 ;
(3)统计公报发布后,有人认为,图1中表示年增长速度的折线逐年下降,说明年全国快递业务量增长速度逐年放缓,所以快递业务量也逐年减少.你赞同这种说法吗?为什么?
(4)若2020年全国快递业务量比2019年增长,请列式计算2020年的快递业务量.
如图1,A,B,C为三个超市.在A通往C的道路(粗实线部分)上有一D点,D与B有道路(细实线部分)相通这.A与D,D与C,D与B之间的路程分别为25㎞,10㎞,5㎞.现计划在A通往C的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货.该货车每于从H出发,单独为A送货1次,为B送货1次,为C送货2次.货车每次仅能给一家超市送货,每次送货后均返回配货中心H.设H到A的路程为㎞,这辆货车每天行驶的路程为
㎞.
(1)用含的代数式填空:当0≤
≤25时货车从H到A往返1次的路程为2
㎞,货车从H到B往返1次的路程为 ㎞;货车从H到C往返2次的路程为 ㎞;这辆货车每天行驶的路程
= ;当25<
≤35时,这辆货车每天行驶的路程
= ;
(2)请在图2中画出与
(0≤
≤35)的函数图象;
(3)配货中心H建在哪段,这辆货车每天行驶的路程最短?
如图,已知在□ABCD中,AB⊥AC,AB=OA,BC=,对角线AC、BD交于O点,将直线AC绕点O顺时针旋转,分别交BC、AD于点EF.
(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试证明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不可能,请说明理由;如果可能,说明理由并求出此时AC绕点O顺时针旋转的度数.
某市在城市建设中要拆除旧烟囱AB(如图所示),在烟囱正西方向的楼CD的顶端C处测得烟囱的顶端A的仰角为45°,底端B的俯角为30°,已量得DB=21.
(1)在原图上画出点C望点A的仰角和点C望点B的俯角,并分别标出仰角和俯角的大小;
(2)拆除时若让烟囱向正东倒下,试问:距离烟囱东方35远的一棵大树是否被歪倒的烟囱砸着?请说明理由.
已知一个三角形的两条边长分别是1㎝和2㎝,一个内角为40°.
(1)请你在下图中画出一个满足题设条件的三角形;
(2)你是否还能画出既满足题设条件又与(1)中所画的三角形不全等的三角形?若能,用“尺规作图”作出所有这样的三角形;若不能,请说明理由;
(3)如果将题设条件改为“三角形的两条边长分别是3㎝和4㎝,一个内角为40°,那么满足这一条件,且彼此不全等的三角形共有个.
(请在你画出的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹)
如图,P是的⊙O半径OA上的一点,D在⊙O上,且PD=PO.过点D作⊙O的切线交OA的延长线于点C,延长DP交⊙O于K,连接KO、OD.
(1)证明:PC=PD;
(2)若该圆半径为5,CD//KO,请求出OC的长.