某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克元,售价每千克16元;乙种蔬菜进价每千克元,售价每千克18元.
(1)该超市购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元,求,的值.
(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜千克为正整数),求有哪几种购买方案.
(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出元,乙种蔬菜每千克捐出元给当地福利院,若要保证捐款后的利润率不低于,求的最大值.
( 本题8分)先阅读,再填空解题:;
;
;
.
(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?
答:.(2)根据以上的规律,用公式表示出来:
.
(3)根据规律,直接写出下列各式的结果:
;
.
( 本题8分) 已知:如图,CD⊥AB于D,BE⊥AC于E,BE、CD相交于点O,且AO平分∠BAC,
求证:OB=OC.
证明:∵AO平分∠BAC,
∴ OB=OC(角平分线上的点到角的两边距离相等)
上述解答是否正确?如果不正确,请你写出正确解答.
( 本题8分) 已知函数的图象经过点
(- 3, - 2)及点
(1, 6).
(1) 求此一次函数解析式,并画图象;
(2) 求此函数图象与坐标轴围成的三角形的面积.
( 本题6分)计算:
(本题共8分,每小题4分)分解因式: (1)
(2)