已知函数 , 均为一次函数, 为常数.
(1)如图1,将直线 绕点 逆时针旋转 得到直线 ,直线 交 轴于点 .若直线 恰好是 , 中某个函数的图象,请直接写出点 坐标以及 可能的值;
(2)若存在实数 ,使得 成立,求函数 , 图象间的距离;
(3)当 时,函数 图象分别交 轴, 轴于 , 两点, 图象交 轴于 点,将函数 的图象最低点 向上平移 个单位后刚好落在一次函数 图象上.设 的图象,线段 ,线段 围成的图形面积为 ,试利用初中知识,探究 的一个近似取值范围.(要求:说出一种得到 的更精确的近似值的探究办法,写出探究过程,得出探究结果,结果的取值范围两端的数值差不超过0.01.
(本题满分12分)正方形边长为4,
、
分别是
、
上的两个动点,当
点在
上运动时,保持
和
垂直,
⑴证明:
;
⑵设
,梯形
的面积为
,求
与
之间的函数关系式;
⑶梯形
的面积可能等于12吗?为什么?
(本题满分10分)李经理到张家果园里一次性采购一种水果,他俩商定:李经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).⑴如果采购量x满足
,求y与x之间的函数关系式;
⑵已知张家种植水果的成本是2 800元/吨,李经理的采购量x满足
,那么当采购量为多少时,张家在这次买卖中所获的利润w最大?最大利润是多少?
(本题满分10分)用铝合金型材做一个形状如图1所示的矩形窗框,设窗框的一边为xm,窗户的透光面积为ym2,y与x的函数图象如图2所示.(图中顶点横坐标为1,纵坐标为1.5)⑴写出y与x之间的函数关系式,指出当x为何值时,窗户透光面积最大?
⑵当窗户透光面积1.125m2时,窗框的两边长各是多少?
已知抛物线与x轴有两个不同的交点.
(1) 求抛物线的对称轴;
(2) 求c的取值范围;
(3)若此抛物线与x轴两交点之间的距离为2,求c的值.
在平行四边形ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E.⑴求圆心O到CD的距离;
⑵求DE的长;
⑶求由弧AE、线段AD、DE所围成的阴影部分的面积.
(结果保留π和根号)