已知函数 , 均为一次函数, 为常数.
(1)如图1,将直线 绕点 逆时针旋转 得到直线 ,直线 交 轴于点 .若直线 恰好是 , 中某个函数的图象,请直接写出点 坐标以及 可能的值;
(2)若存在实数 ,使得 成立,求函数 , 图象间的距离;
(3)当 时,函数 图象分别交 轴, 轴于 , 两点, 图象交 轴于 点,将函数 的图象最低点 向上平移 个单位后刚好落在一次函数 图象上.设 的图象,线段 ,线段 围成的图形面积为 ,试利用初中知识,探究 的一个近似取值范围.(要求:说出一种得到 的更精确的近似值的探究办法,写出探究过程,得出探究结果,结果的取值范围两端的数值差不超过0.01.
已知关于的一元二次方程
.
(1)若是这个方程的一个根,求
的值和它的另一根;
(2)对于任意的实数,判断原方程根的情况,并说明理由.
某商场今年二月份的营业额为400万元,三月份由于经营不善,其营业额比二月份下降10%.后来通过加强管理,五月份的营业额达到518.4万元.求三月份到五月份营业额的月平均增长率.
如图,已知四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连结AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE绕旋转中心 点,按顺时针方向旋转 度得到;
(3)若BC=8,DE=6,求△AEF的面积.
某校九年级举行毕业典礼,需要从九年(1)班的2名男生1名女生(男生用A1表示,女生用B1表示)和九年(2)班的1名男生1名女生(男生用A2表示,女生用B2表示)共5人中随机选出2名主持人.(1)用树状图或列表法列出所有可能情形;
(2)求2名主持人来自不同班级的概率;
(3)求2名主持人恰好1男1女的概率.
如图,在边长为1个单位长度的小正方形组成的方格中,点A、B、C都是格点.
(1)将△ABC绕点O按逆时针方向旋转180°得到△A1B1C1,请画出△A1B1C1;
(2)依次连结BC1、B1C,猜想四边形BC1B1C是什么特殊四边形?并说明理由.