为了探索函数 的图象与性质,我们参照学习函数的过程与方法.
列表:
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
|
|
|
|
|
|
2 |
|
|
|
|
|
描点:在平面直角坐标系中,以自变量 的取值为横坐标,以相应的函数值 为纵坐标,描出相应的点,如图1所示:
(1)如图1,观察所描出点的分布,用一条光滑曲线将点顺次连接起来,作出函数图象;
(2)已知点 , , , 在函数图象上,结合表格和函数图象,回答下列问题:
若 ,则 ;若 ,则 ;
若 ,则 (填" "," "或" " .
(3)某农户要建造一个图2所示的长方体形无盖水池,其底面积为1平方米,深为1米.已知底面造价为1千元 平方米,侧面造价为0.5千元 平方米.设水池底面一边的长为 米,水池总造价为 千元.
①请写出 与 的函数关系式;
②若该农户预算不超过3.5千元,则水池底面一边的长 应控制在什么范围内?
(10分)阅读下面的例题,解方程
解方程;
解:原方程化为。令
,原方程化成
解得:
当;当
时(不合题意,舍去)
∴原方程的解是
解下列方程
(1)(配方法) (2)
(3)
观察下列各式:
……
由上面的规律:
(1)求的值;
(2)求…
的个位数字.
(3)你能用其它方法求出的值吗?
甲、乙两地同时生产某种蔬菜若干吨,现甲地可外销这种蔬菜10吨,乙地可外销这种蔬菜4吨,经调查A、B两城各需这种蔬菜分别为8吨和6吨.每吨这种蔬菜的运费如下表.设乙地运往B城的这种蔬菜为x吨.
(1)用含x的代数式来表示总运费(单位:百元/吨);
(2)若总运费为8400元,则乙地运往A城的这种蔬菜为多少吨?
(3)试问有无可能总运费为7400元?若有可能,请写出相应的调动方案;若无可能,请说明理由.
三个有理数的积是负数,其和为正数,当
时,试求
的值.