如图1,与直线相离,过圆心作直线的垂线,垂足为,且交于、两点在、之间).我们把点称为关于直线的“远点“,把的值称为关于直线的“特征数”.
(1)如图2,在平面直角坐标系中,点的坐标为.半径为1的与两坐标轴交于点、、、.
①过点画垂直于轴的直线,则关于直线的“远点”是点 (填“”.“ ”、“ ”或“” ,关于直线的“特征数”为 ;
②若直线的函数表达式为.求关于直线的“特征数”;
(2)在平面直角坐标系中,直线经过点,点是坐标平面内一点,以为圆心,为半径作.若与直线相离,点是关于直线的“远点”.且关于直线的“特征数”是,求直线的函数表达式.
(本题满分8分,每小题4分)因式分解:
(1)2a2﹣8
(2)4ab2―4a2b―b3
(本题满分8分,每小题4分)
(1)解方程组:
(2)计算:
如图(1),四边形ABCD中,AD∥BC,点E是线段CD上一点,
(1)说明:∠AEB=∠DAE+∠CBE;
(2)如图(2),当AE平分∠DAC,∠ABC=∠BAC.
①说明:∠ABE+∠AEB=900;
②如图(3)若∠ACD的平分线与BA的延长线交于点F,且∠F=600,求∠BCD.
某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元.商场销售5 台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.
(1)求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格);
(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?
阅读下列材料:“a2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:
(1)填空:x2-4x+5=(x)2+;
(2)已知x2-4x+y2+2y+5=0,求x+y的值;
(3)比较代数式:x2-1与2x-3的大小.