【了解概念】
有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.
【理解运用】
(1)如图①,对余四边形 中, , , ,连接 .若 ,求 的值;
(2)如图②,凸四边形 中, , ,当 时,判断四边形 是否为对余四边形.证明你的结论;
【拓展提升】
(3)在平面直角坐标系中,点 , , ,四边形 是对余四边形,点 在对余线 上,且位于 内部, .设 ,点 的纵坐标为 ,请直接写出 关于 的函数解析式.
给出依次排列的一列数:
—1、2、—4、8、—16、32,---------
(1)按照给出的这个数列的某种规律,继续写出后面的3项: , , ;
(2)这一列数第n个数是什么?
一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,-3,+10,-8,-6,+12,-10.
(1)守门员最后是否回到了球门线的位置?
(2)在练习过程中,守门员离开球门线最远距离是多少米?
(3)守门员全部练习结束后,他共跑了多少米?
在数轴上表示下列各数,并按从小到大的顺序用“<”号连接起来., +3 , 0 ,
, -
,
观察下面各式:
12+(1×2)2+22=(1×2+1)2
22+(2×2)2+32=(2×3+1)2
32+(3×4)2+42=(3×4+1)2
……
(1)写出第2005个式子;
(2)写出第n个式子,并说明你的结论.
若f(x)=2x-1(如f(-2)=2×(-2)-1,f(3)=2×3-1),求的值.