已知反比例函数 与一次函数y=x+2的图象交于点A(﹣3,m)
(1)求反比例函数的解析式;
(2)如果点M的横、纵坐标都是不大于3的正整数,求点M在反比例函数图象上的概率.
函数和
的图象关于
轴对称,我们把函数
和
叫做互为“镜子”函数.类似地,如果函数
和
的图象关于
轴对称,那么我们就把函数
和
叫做互为“镜子”函数.
(1)请写出函数y=2x-3的“镜子”函数: ▲;
(2)函数 ▲的“镜子”函数是y=-x2+2x+3;
(3)如图,一条直线与一对“镜子”函数(
>
)和
(
<
)的图象分别交于点A,B,C,如果
,点
在函数
(
<
)的“镜子”函数上的对应点的横坐标是1/2,求点
的坐标.
2012年4月11日,印尼北苏门答腊西岸发生里氏8.6级特大地震,造成重大人员伤亡和财产损失.强震发生后,中国军队将筹措到位的第一批援印尼救灾物资打包成件,其中棉帐篷和毛巾被共3200件,毛巾被比棉帐篷多800件.
(1)求打包成件的棉帐篷和毛巾被各多少件?
(2)现计划用甲、乙两种小飞机共8架,一次性将这批棉帐篷和毛巾被全部运往印尼重灾区.已知甲种飞机最多可装毛巾被400件和棉帐篷100件,乙种飞机最多可装毛巾被和棉帐篷各200件.则安排甲、乙两种飞机时有几种方案?请你帮助设计出来.
(3)在第(2)问的条件下,如果甲种飞机每架需运输成本费4000元,乙种飞机每架需付运输成本费3600元.应选择哪种方案可使运输成本费最少?最少运输成本费是多少元?
已知:如图,半径
垂直于弦
,点
在
的延长线上,
平分
.
(1) 求证:是
的切线
(2) 如果=
,
=30°,求阴影部分面积.(保留根号和
)
“体验·创新·成长”这是2012某市第八届少年科技大赛的宗旨.比赛分为四类:优秀科技实践活动、科技创新活动项目、优秀少儿科学幻想绘画、科技创新成果.评委对所有的参赛作品进行了分类统计,各类参赛作品按一定的百分比设奖,并对获奖作品也进行分类,制作了如下的条形统计图及扇形统计图:
作根据上述信息,完成下列问题:
(1) 参赛获奖品总数是件;
(2) 算出获奖优秀科技实践活动所在扇形的圆心角的度数,并将条形图补充完整;
(3)全市中小学生参加少年科技大赛热情高涨,在2012参赛作品328件的基础上逐年增长,预计2014年参赛作品将有738件,求平均每年的增长率是多少?
如图,在矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F.
(1)求证:△BOE≌△DOF;
(2)当EF与AC满足____▲_____关系时,以A、E、C、F为顶点的四边形是菱形.