自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:
使用次数 |
0 |
1 |
2 |
3 |
4 |
5(含5次以上) |
累计车费 |
0 |
0.5 |
0.9 |
1.5 |
同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:
使用次数 |
0 |
1 |
2 |
3 |
4 |
5 |
人数 |
5 |
15 |
10 |
30 |
25 |
15 |
(Ⅰ)写出a,b的值;
(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.
如图,直线 与坐标轴交于 、 两点,抛物线 经过点 ,与直线 交于点 ,且与 轴交于 , 两点.
(1)求抛物线的解析式;
(2)抛物线上有一点 ,当 时,求点 的横坐标;
(3)点 在抛物线上,在坐标平面内是否存在点 ,使得以点 , , , 为顶点的四边形是矩形?若存在,请直接写出点 的坐标;若不存在,请说明理由.
在 和 中, , .且 ,点 在 的内部,连接 , 和 ,并且 .
(1)如图①,当 时,线段 与 的数量关系为 ,线段 , , 的数量关系为 ;
(2)如图②,当 时,请写出线段 , , 的数量关系,并说明理由;
(3)在(2)的条件下,当点 在线段 上时,若 ,请直接写出 的面积.
随着人们生活水平的提高,短途旅行日趋火爆.我市某旅行社推出“辽阳 葫芦岛海滨观光一日游”项目,团队人均报名费用 (元 与团队报名人数 (人 之间的函数关系如图所示,旅行社规定团队人均报名费用不能低于88元.旅行社收到的团队总报名费用为 (元 .
(1)直接写出当 时, 与 之间的函数关系式及自变量 的取值范围;
(2)儿童节当天旅行社收到某个团队的总报名费为3000元,报名旅游的人数是多少?
(3)当一个团队有多少人报名时,旅行社收到的总报名费最多?最多总报名费是多少元?
如图, 是 的内接三角形, 是 的直径, ,交 于点 ,点 在 的延长线上,射线 经过点 ,且 .
(1)求证: 是 的切线;
(2)若 , ,求阴影部分的面积.(结果保留 和根号).
如图,菱形 的顶点 在 轴正半轴上,边 在 轴上,且 , ,反比例函数 的图象分别与 , 交于点 、点 ,点 的坐标是 ,连接 , .
(1)求反比例函数的解析式;
(2)求证: 是等腰三角形.