在我市十个全覆盖工作的推动下,某乡镇准备在相距3千米的 A、 B两个工厂间修一条笔直的公路,在工厂 A北偏东60°方向、工厂北偏西45°方向有一点 P,以 P点为圆心,1.2千米为半径的区域是一个村庄,问修筑公路时,这个村庄是否有居民需要搬迁?(参考数据: , )
已知:抛物线经过点P(﹣1,﹣2b)(b、c为常量).
(1)求b+c的值;
(2)证明:无论b、c取何值,抛物线与x轴都有两个交点.
已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.
(1)求从中随机抽取出一个黑球的概率是多少?
(2)若往口袋中再放入个白球和
个黑球,从口袋中随机取出一个白球的概率是
,求
与
之间的函数关系式.
如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,弧AE=弧 AB,BE分别交AD、AC于点F、G.
(1)判断△FAG的形状,并说明理由;
(2)若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由.
已知关于的一元二次方程
有两个实数根.
(1)求的取值范围;
(2)设是方程的一个实数根,且满足
,求
的值.
解方程:(1);
(2).