已知抛物线 y= a( x﹣1) 2+3( a≠0)与 y轴交于点 A(0,2),顶点为 B,且对称轴 l 1与 x轴交于点 M
(1)求 a的值,并写出点 B的坐标;
(2)有一个动点 P从原点 O出发,沿 x轴正方向以每秒2个单位的速度运动,设运动时间为 t秒,求 t为何值时 PA+ PB最短;
(3)将此抛物线向右平移所得新的抛物线与原抛物线交于点 C,且新抛物线的对称轴 l 2与 x轴交于点 N,过点 C作 DE∥ x轴,分别交 l 1, l 2于点 D、 E,若四边形 MDEN是正方形,求平移后抛物线的解析式.
如图,已知点M、N和∠AOB,求作一点P,使P到点M、N的距离相等,且到∠AOB的两边的距离相等.
先化简,再求值:,其中x=3,y=1
解下列方程与不等式
(1);
(2).
计算(1)
(2)
图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了层.将图1倒置后与原图拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为
…
.
如果图1中的圆圈共有12层,
(1)当有12层时,图中共有个圆圈;
(2)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数,…,则最底层最左边这个圆圈中的数是;
(3)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数,
,
,…,求图4中所有圆圈中各数之和.