已知抛物线 y=﹣ x 2﹣ x的图象如图所示:
(1)将该抛物线向上平移2个单位,分别交 x轴于 A、 B两点,交 y轴于点 C,则平移后的解析式为 .
(2)判断△ ABC的形状,并说明理由.
(3)在抛物线对称轴上是否存在一点 P,使得以 A、 C、 P为顶点的三角形是等腰三角形?若存在,求出点 P的坐标;若不存在,说明理由.
(本题满分8分)如图①和图②中每个小正方形的边长都为1个单位长度.
(1)将图①中的格点△ABC(顶点都在网格线交点处的三角形叫做格点三角形)向上平移2个单位长度得到△A1B1C1.请你在图①中画出A1B1C1. (2)在图②中画一个与格点△ABC相似的格点△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.
(本题满分6分)(1)化简:
.
(2)解方程:(x+3)(x+1)=6x+4.
(本题9分)如图(1),在直角梯形OABC中,BC∥OA,∠OCB=90°,OA=6,AB=5,cos∠OAB=.
(1)写出顶点A、B、C的坐标;
(2)如图(2),点P为AB边上的动点(P与A、B不重合),PM⊥OA,PN⊥OC,垂足分别为M,N.设PM=x,四边形OMPN的面积为y.
①求出y与x之间的函数关系式,并写出自变量x的取值范围;
②是否存在一点P,使得四边形OMPN的面积恰好等于梯形OABC的面积的一半?如果存在,求出点P的坐标;如果不存在,说明理由.
(本题9分)某水产品市场管理部门规划建造面积为2400 m2的集贸大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28 m2,月租费为400元;每间B种类型的店面的平均面积为20m2,月租费为360元.全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.(1)试确定A种类型店面的数量;
(2)该大棚管理部门通过了解业主的租赁意向得知,A种类型店面的出租率为75%,B种类型店面的出租率为90%.为使店面的月租费最高,应建造A种类型的店面多少间?
(本题9分)如图,已知抛物线y=ax2+bx+3的图象与x轴交于A、B两点,与y轴交于点C,且点C、D是抛物线上的一对对称点.(1)求抛物线的解析式;
(2)求点D的坐标,并在图中画出直线BD;
(3)求出直线BD的一次函数解析式,并根据图象回答:当x满足什么条件时,上述二次函数的值大于该一次函数的值.