《九章算术》是我国古代数学的经典著作,书中有一个问题:"今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?".意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重 x两,每枚白银重 y两,根据题意得( )
11 x = 9 y ( 10 y + x ) - ( 8 x + y ) = 13
10 y + x = 8 x + y 9 x + 13 = 11 y
9 x = 11 y ( 8 x + y ) - ( 10 y + x ) = 13
9 x = 11 y ( 10 y + x ) - ( 8 x + y ) = 13
已知,正六边形的半径是,则这个正六边形的边长是
用配方法解方程,下列配方正确的是
已知一元一次方程,下列判断错误的是
已知⊙的半径分别为,若。则⊙的位置关系是
下列图形中,可以看作是中心对称图形的是
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号