平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是 .
一元一次方程 的解是 .
如图,经过原点 的直线与反比例函数 的图象交于 , 两点(点 在第一象限),点 , , 在反比例函数 的图象上, 轴, 轴,五边形 的面积为56,四边形 的面积为32,则 的值为 , 的值为 .
如图, 的半径 , 是 上的动点(不与点 重合),过点 作 的切线 , ,连结 , .当 是直角三角形时,其斜边长为 .
如图,折扇的骨柄长为 ,折扇张开的角度为 ,图中 的长为 (结果保留 .
今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数 (单位:千克)及方差 (单位:千克 如表所示:
甲 |
乙 |
丙 |
|
|
45 |
45 |
42 |
|
1.8 |
2.3 |
1.8 |
明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是 .