游客
题文

阅读下列材料并回答问题:

材料1:如果一个三角形的三边长分别为 a b c ,记 p = a + b + c 2 ,那么三角形的面积为 S = p ( p a ) ( p b ) ( p c )    

古希腊几何学家海伦 ( Heron ,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.

我国南宋数学家秦九韶(约 1202 1261 ) ,曾提出利用三角形的三边求面积的秦九韶公式: S = 1 4 [ a 2 b 2 ( a 2 + b 2 c 2 2 ) 2 ]     

下面我们对公式②进行变形: 1 4 [ a 2 b 2 ( a 2 + b 2 c 2 2 ) 2 ] = ( 1 2 ab ) 2 ( a 2 + b 2 c 2 4 ) 2 = ( 1 2 ab + a 2 + b 2 c 2 4 ) ( 1 2 ab a 2 + b 2 c 2 4 ) = 2 ab + a 2 + b 2 c 2 4 · 2 ab a 2 b 2 + c 2 4 = ( a + b ) 2 c 2 4 · c 2 ( a b ) 2 4 = a + b + c 2 · a + b c 2 · a + c b 2 · b + c a 2 = p ( p a ) ( p b ) ( p c )

这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦 秦九韶公式.

问题:如图,在 ΔABC 中, AB = 13 BC = 12 AC = 7 O 内切于 ΔABC ,切点分别是 D E F

(1)求 ΔABC 的面积;

(2)求 O 的半径.

科目 数学   题型 解答题   难度 中等
知识点: 三角形的面积 三角形的内切圆与内心 三角形综合题
登录免费查看答案和解析
相关试题

先化简,再求值: ( 2 - 2 x x - 2 ) ÷ x 2 - 4 x 2 - 4 x + 4 ,其中 x = 4

计算: ( 2021 - π ) 0 + ( 1 2 ) - 1 - 2 cos 45 °

已知抛物线 y = a x 2 + bx + c x 轴只有一个公共点.

(1)若抛物线过点 P ( 0 , 1 ) ,求 a + b 的最小值;

(2)已知点 P 1 ( - 2 , 1 ) P 2 ( 2 , - 1 ) P 3 ( 2 , 1 ) 中恰有两点在抛物线上.

①求抛物线的解析式;

②设直线 l : y = kx + 1 与抛物线交于 M N 两点,点 A 在直线 y = - 1 上,且 MAN = 90 ° ,过点 A 且与 x 轴垂直的直线分别交抛物线和 l 于点 B C .求证: ΔMAB ΔMBC 的面积相等.

如图,在正方形 ABCD 中, E F 为边 AB 上的两个三等分点,点 A 关于 DE 的对称点为 A ' AA ' 的延长线交 BC 于点 G

(1)求证: DE / / A ' F

(2)求 GA ' B 的大小;

(3)求证: A ' C = 2 A ' B

"田忌赛马"的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马 A 1 B 1 C 1 ,田忌也有上、中、下三匹马 A 2 B 2 C 2 ,且这六匹马在比赛中的胜负可用不等式表示如下: A 1 > A 2 > B 1 > B 2 > C 1 > C 2 (注 : A > B 表示 A 马与 B 马比赛, A 马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的"出马"顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵 ( C 2 A 1 A 2 B 1 B 2 C 1 ) 获得了整场比赛的胜利,创造了以弱胜强的经典案例.

假设齐王事先不打探田忌的"出马"情况,试回答以下问题:

(1)如果田忌事先只打探到齐王首局将出"上马",他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;

(2)如果田忌事先无法打探到齐王各局的"出马"情况,他是否必败无疑?若是,请说明理由;若不是,请列出田忌获得整场比赛胜利的所有对阵情况,并求其获胜的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号