为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:
收集数据:
七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理数据:
|
|
|
|
|
|
|
七年级 |
0 |
1 |
0 |
|
7 |
1 |
八年级 |
1 |
0 |
0 |
7 |
|
2 |
分析数据:
平均数 |
众数 |
中位数 |
|
七年级 |
78 |
75 |
|
八年级 |
78 |
|
80.5 |
应用数据:
(1)由上表填空: , , , .
(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?
(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.
某校七年级共有200名学生,在一次数学测验后,为了解本次测验的成绩情况,从中随机抽取了部分学生的成绩进行统计,并制作了如下图表:
请你根据以上信息,解答下列问题:
(1)写出a,b,d的值并补全条形图;
(2)请你估计该校七年级共有多少名学生本次成绩不低于80分.
如图所示,在所给的平面直角坐标系中,
(1)描出下列各点,并将A、B、C三点顺次连接起来
A(2,3)、B(—2,—1)、C(3,2)
(2)将向左平移2个单位长度,向下平移1个单位长度,得到
,则点
的对应点
的坐标为 ;点
的对应点
的坐标为 ;点
的对应点
的坐标为
解下列不等式组,并把解集表示在数轴上
(1)
(2)
解方程组
如图,已知抛物线与
轴交于
(
,0)、
两点,与
轴交于
点,其对称轴为直线
.
(1)求抛物线的解析式;
(2)把线段沿
轴向右平移,设平移后
、
的对应点分别为A′、C′,当C′落在抛物线上时,求A′、C′的坐标;
(3)除(2)中的点A′、C′外,在x轴和抛物线上是否还分别存在点E、F,使得以A、C、E、F为顶点的四边形为平行四边形,若存在,求出E、F的坐标;若不存在,请说明理由。