游客
题文

以菱形 ABCD 的对角线交点 O 为坐标原点, AC 所在的直线为 x 轴,已知 A ( 4 , 0 ) B ( 0 , 2 ) M ( 0 , 4 ) P 为折线 BCD 上一动点,作 PE y 轴于点 E ,设点 P 的纵坐标为 a

(1)求 BC 边所在直线的解析式;

(2)设 y = M P 2 + O P 2 ,求 y 关于 a 的函数关系式;

(3)当 ΔOPM 为直角三角形时,求点 P 的坐标.

科目 数学   题型 解答题   难度 较难
知识点: 菱形的性质 四边形综合题 勾股定理的逆定理
登录免费查看答案和解析
相关试题

请阅读下列材料,并完成相应的任务:

阿基米德折弦定理

阿基米德 ( archimedes ,公元前 287 - 公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.

阿拉伯 Al - Binmi ( 973 - 1050 年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据 Al - Binmi 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.

阿基米德折弦定理:如图1, AB BC O 的两条弦(即折线 ABC 是圆的一条折弦), BC > AB M ABC ̂ 的中点,则从 M BC 所作垂线的垂足 D 是折弦 ABC 的中点,即 CD = AB + BD .下面是运用"截长法"证明 CD = AB + BD 的部分证明过程.证明:如图2,在 CB 上截取 CG = AB ,连接 MA MB MC MG

M ABC ̂ 的中点,

MA = MC

任务:

(1)请按照上面的证明思路,写出该证明的剩余部分;

(2)填空:如图3,已知等边 ΔABC 内接于 O AB = 2 D AC ̂ 上一点, ABD = 45 ° AE BD 于点 E ,则 ΔBDC 的周长是  

每年5月的第二周为"职业教育活动周",今年我省开展了以"弘扬工匠精神,打造技能强国"为主题的系列活动.活动期间某职业中学组织全校师生并邀请学生家长和社区居民参加"职教体验观摩"活动,相关职业技术人员进行了现场演示,活动后该校教务处随机抽取了部分学生进行调查:"你最感兴趣的一种职业技能是什么?"并对此进行了统计,绘制了统计图(均不完整).请解答以下问题:

(1)补全条形统计图和扇形统计图;

(2)若该校共有1800名学生,请估计该校对"工业设计"最感兴趣的学生有多少人?

(3)要从这些被调查的学生中,随机抽取一人进行访谈,那么正好抽到对"机电维修"最感兴趣的学生的概率是    

解方程: 2 ( x - 3 ) 2 = x 2 - 9

如图1, AD BD 分别是 ΔABC 的内角 BAC ABC 的平分线,过点 A AEAD ,交 BD 的延长线于点 E

(1)求证: E== 1 2 C

(2)如图2,如果 AE=AB ,且 BD:DE=2:3 ,求 cosABC 的值;

(3)如果 ABC 是锐角,且 ΔABC ΔADE 相似,求 ABC 的度数,并直接写出 S ΔADE S ΔABC 的值.

在平面直角坐标系 xOy 中(如图),已知抛物线 y= x 2 -2x ,其顶点为 A

(1)写出这条抛物线的开口方向、顶点 A 的坐标,并说明它的变化情况;

(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.

①试求抛物线 y= x 2 -2x 的“不动点”的坐标;

②平移抛物线 y= x 2 -2x ,使所得新抛物线的顶点 B 是该抛物线的“不动点”,其对称轴与 x 轴交于点 C ,且四边形 OABC 是梯形,求新抛物线的表达式.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号