我们定义一种新函数:形如 的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数 的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为 , 和 ;②图象具有对称性,对称轴是直线 ;③当 或 时,函数值 随 值的增大而增大;④当 或 时,函数的最小值是0;⑤当 时,函数的最大值是4.其中正确结论的个数是 .
分解因式: .
图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面 与地面平行,支撑杆 , 可绕连接点 转动,且 ,椅面底部有一根可以绕点 转动的连杆 ,点 是 的中点, , 均与地面垂直,测得 , , .
(1)椅面 的长度为 .
(2)如图3,椅子折叠时,连杆 绕着支点 带动支撑杆 , 转动合拢,椅面和连杆夹角 的度数达到最小值 时, , 两点间的距离为 (结果精确到 .
(参考数据: , ,
将一副三角板如图放置在平面直角坐标系中,顶点 与原点 重合, 在 轴正半轴上,且 ,点 在 上, ,将这副三角板整体向右平移 个单位, , 两点同时落在反比例函数 的图象上.
如图,在正五边形 中,连结 , 交于点 ,则 的度数为 .
为庆祝建党100周年,某校举行“庆百年红歌大赛”.七年级5个班得分分别为85,90,88,95,92,则5个班得分的中位数为 分.