如图,四边形 ABCD 内接于圆 O , ∠ BAD = 90 ° , AC 为直径,过点 A 作圆 O 的切线交 CB 的延长线于点 E ,过 AC 的三等分点 F (靠近点 C ) 作 CE 的平行线交 AB 于点 G ,连接 CG .
(1)求证: AB = CD ;
(2)求证: C D 2 = BE ⋅ BC ;
(3)当 CG = 3 , BE = 9 2 时,求 CD 的长.
已知,,求代数式的值.
解下列一元一次方程 (1); (2).
化简: (1); (2).
如图(1),A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,若AB=CD,试证明BD平分EF,若将△DEC的边EC沿AC方向移动变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.
如图在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,求DF的长.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号