游客
题文

如图,抛物线 y = 2 3 x 2 + bx + c 经过点 B ( 3 , 0 ) C ( 0 , 2 ) ,直线 l : y = 2 3 x 2 3 y 轴于点 E ,且与抛物线交于 A D 两点, P 为抛物线上一动点(不与 A D 重合).

(1)求抛物线的解析式;

(2)当点 P 在直线 l 下方时,过点 P PM / / x 轴交 l 于点 M PN / / y 轴交 l 于点 N ,求 PM + PN 的最大值.

(3)设 F 为直线 l 上的点,以 E C P F 为顶点的四边形能否构成平行四边形?若能,求出点 F 的坐标;若不能,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

计算:

如图,抛物线的顶点为D,与x轴交于点A,B,与y轴交于点C,且OB =" 2OC=" 3.

(1)求a,b的值;
(2)将45°角的顶点P在线段OB上滑动(不与点B重合),该角的一边过点D,另一边与BD交于点Q,设P(x,0),y2=DQ,试求出y2关于x的函数关系式;
(3)在同一平面直角坐标系中,两条直线x = m,x = m+分别与抛物线y1交于点E,G,与y2的函数图象交于点F,H.问点E、F、H、G围成四边形的面积能否为?若能,求出m的值;若不能,请说明理由.

△ABC中,∠A=90°,点D在线段BC上(端点B除外),∠EDB = ∠C,BE⊥DE于点E,DE与AB相交于点F.
(1)当AB = AC时(如图1)
①∠EBF= ▲ °;
②小明在探究过程中发现,线段FD BE始终保持一种特殊的数量关系,请你猜想这个关系,并利用所学知识证明猜想的正确性;
(2)探究:

AB = kAC时(k>0,如图2),用含k的式子表示线段FDBE之间的数量关系,请直接写出结果.

如图,C为以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D

(1)求证:AC平分∠BAD
(2)若CD3,AC=3,求⊙O的半径长.

如图,过点B(2,0)的直线l:y轴于点A,与反比例函数的图象交于点C(3,n).、

(1)求反比例函数的解析式;
(2)将△OBC绕点O逆时针方向旋转α角(α为锐角),
得到△OB′C′.当OC′AB时,求点C运动的路径长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号