游客
题文

如图,抛物线 y = 2 3 x 2 + bx + c 经过点 B ( 3 , 0 ) C ( 0 , 2 ) ,直线 l : y = 2 3 x 2 3 y 轴于点 E ,且与抛物线交于 A D 两点, P 为抛物线上一动点(不与 A D 重合).

(1)求抛物线的解析式;

(2)当点 P 在直线 l 下方时,过点 P PM / / x 轴交 l 于点 M PN / / y 轴交 l 于点 N ,求 PM + PN 的最大值.

(3)设 F 为直线 l 上的点,以 E C P F 为顶点的四边形能否构成平行四边形?若能,求出点 F 的坐标;若不能,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

4(2x+3)=9(1-x)-5(x-2)

如图1,在同一平面内,将两个全等的等腰直角三角形ABCAFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n

(1)请在图1中找出两对相似而不全等的三角形,并选取其中一对证明它们相似;
(2)根据图1,求mn的函数关系式,直接写出自变量n的取值范围;
(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2). 旋转∆AFG,使得BD=CE,求出D点的坐标,并通过计算验证
(4)在旋转过程中,(3)中的等量关系是否始终成立,若成立,请证明,若不成立,请说明理由.

某公司为了开发新产品,用AB两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:


A(单位:千克)
B(单位:千克)

9
3

4
10

(1)设生产甲种产品x件,根据题意列出不等式组,求出x的取值范围;
(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,求出成本总额y(元)与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号