如图,抛物线 与 轴交于 , 两点(点 在点 左侧),与 轴交于点 ,点 是抛物线上的一个动点,且位于第四象限,连接 、 、 、 ,延长 交 轴于点 .
(1)若 为等腰直角三角形,求 的值;
(2)若对任意 , 、 两点总关于原点对称,求点 的坐标(用含 的式子表示);
(3)当点 运动到某一位置时,恰好使得 ,且点 为线段 的中点,此时对于该抛物线上任意一点 , 总有 成立,求实数 的最小值.
化简求值;求其中
(1)
(2)
在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.
(1)如图1,当点M与点C重合,求证:DF=MN;
(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以cm/s速度沿AC向点C运动,运动时间为t(t>0);
①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.
②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.
如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G.
(1)求证:△APB≌△APD;
(2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y.
①求y与x的函数关系式;
②当x=6时,求线段FG的长.
关于的方程
有两个不相等的实数根.
(1)求的取值范围.
(2)是否存在实数,使方程的两个实数根的倒数和等于0?若存在,求出
的值;若不存在,说明理由.