《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示, ΔABC 中, ∠ ACB = 90 ° , AC + AB = 10 , BC = 3 ,求 AC 的长,如果设 AC = x ,则可列方程为 .
长为1、2、3、4、5的线段各一条,从这5条线段中任取3条,能构成钝角三角形的概率是 .
已知半径为2的⊙0,圆内接△ABC的边AB=2,则∠C= .
如图,DB为半圆的直径,A为BD延长线上一点,AC切半圆于点E,BC⊥AC于点C,交半圆于点F.已知BD=2,设AD=x,CF=y,则y关于x的函数解析式是 .
如图,梯形ABCD的两条对角线与两底所围成的两个三角形的面积分别为p2、q2,则梯形的面积为 .
如图,等腰△ABC中,底边BC=a,∠A=36°,∠ABC的平分线交AC于D,∠BCD的平分线交BD于E.设k=,则DE= .
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号