某校在宣传“民族团结”活动中,采用四种宣传形式: .器乐, .舞蹈, .朗诵, .唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.
请结合图中所给信息,解答下列问题:
(1)本次调查的学生共有 人;
(2)补全条形统计图;
(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?
(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.
如图,Rt△AOC中,∠ACO=90°,∠AOC=30°.将Rt△AOC绕OC中点E按顺时针方向旋转180°后得到Rt△BCO,BO、CO恰好分别在y轴、x轴上.再将Rt△BCO沿y轴对折得到Rt△BDO.取BC中点F,连接DF,交AB于点G,将△BDG沿DF对折得到△KDG.直线DK交AB于点H.填空:CE:ED=________,AB:AC=__________;
若BH=
,求直线BD解析式
在(2)的条件下,一抛物线过点D、点E、点B,此抛物线位于直线BD上方有一动点Q,△BDQ的面积有无最大值?若有,请求出点Q的坐标;若无,请说明理由
如图,AB、ED是⊙O的直径,点C在ED延长线上, 且∠CBD =∠FAB.点F在⊙O上,且 AB⊥DF.连接AD并延长交BC于点G.求证:BC是⊙O的切线;
求证:BD·BC=BE·CD;
若⊙O 的半径为r,BC=3r,求tan∠CDG的值
阅读材料:已知p2-p-1=0 , 1-q-q2=0 , 且pq≠1 ,求的值.
解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0,
又因为pq≠1 所以p≠,所以1-q-q2 =0可变形为:(
)2-(
)-1=0 ,
根据p2-p-1=0和()2-(
)-1=0的特征,
p与可以看作方程x2-x-1=0的两个不相等的实数根,所以p+
=1,所以
=1.
根据以上阅读材料所提供的方法,完成下面的解答:已知m2-5mn+6n2=0,m>n,求
的值
已知2m2-5m-1=0,(
)2+
-2=0,且m≠n ,求
的值.
某商场销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.设商场每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
若物价部门规定,这种护眼台灯的销售单价不得高于32元,求该商场每月可获得最大利润.
如图,小岛A在港口P的南偏西45°方向,距离港口81海里处.甲船从A出发,沿AP方向以9海里/时的速度驶向港口,乙船从港口P出发,沿南偏东60°方向,以18海里/时的速度驶离港口,现两船同时出发.出发后几小时两船与港口P的距离相等?
出发后几小时乙船在甲船的正东方向?(结果精确到0.1小时)
(参考数据:≈1.41,
≈1.73)