如图,已知 , ,抛物线 过 、 两点,并与过 点的直线 交于点 .
(1)求抛物线解析式及对称轴;
(2)在抛物线的对称轴上是否存在一点 ,使四边形 的周长最小?若存在,求出点 的坐标,若不存在,请说明理由;
(3)点 为 轴右侧抛物线上一点,过点 作直线 的垂线,垂足为 .问:是否存在这样的点 ,使以点 、 、 为顶点的三角形与 相似,若存在,求出点 的坐标,若不存在,请说明理由.
如图,A、B两个化工厂在河道CD的同侧,A、B两厂到河的距离分别为AC=2 km,BD=3 km,CD=12 km,现在河边CD上建污水处理站,将A、B两厂输送的污水处理后再排入河道,设铺设排污水管的费用为20000元/千米,请你在河道CD边上选择污水站位置,使铺设排污水管的费用最省,并求出铺设排污水管的总费用?
.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试判断△BCE的形状,并证明你的结论.
如图,在△ABC中,∠ABC=45º,CD⊥AB,BE⊥AC,垂足分别为D、E,F为BC中点,BE与DF、DC分别交于点G、H,∠ABE=∠CBE。
(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;
(2)求证:
.在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:Rt△ABE≌Rt△CBF;
(2)若∠CAE=35º,求∠ACF度数.
.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.试猜想线段BC和EF的数量及位置关系,并证明你的猜想