如图,在平面直角坐标系 xOy 中,一次函数 y = x 与二次函数 y = x 2 + bx 的图象相交于 O 、 A 两点,点 A ( 3 , 3 ) ,点 M 为抛物线的顶点.
(1)求二次函数的表达式;
(2)长度为 2 2 的线段 PQ 在线段 OA (不包括端点)上滑动,分别过点 P 、 Q 作 x 轴的垂线交抛物线于点 P 1 、 Q 1 ,求四边形 PQ Q 1 P 1 面积的最大值;
(3)直线 OA 上是否存在点 E ,使得点 E 关于直线 MA 的对称点 F 满足 S ΔAOF = S ΔAOM ?若存在,求出点 E 的坐标;若不存在,请说明理由.
计算 (1)(2)
-24+[(-4)2-(1-32)×2]
(本题16分)计算: ⑴ ⑵ (3) -14×(-2)+(-5)×2+4× (4)
已知,求的值,
计算:,
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号