游客
题文

(探索发现)

如图①,是一张直角三角形纸片, B = 90 ° ,小明想从中剪出一个以 B 为内角且面积最大的矩形,经过多次操作发现,当沿着中位线 DE EF 剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为       

(拓展应用)

如图②,在 ΔABC 中, BC = a BC 边上的高 AD = h ,矩形 PQMN 的顶点 P N 分别在边 AB AC 上,顶点 Q M 在边 BC 上,则矩形 PQMN 面积的最大值为      .(用含 a h 的代数式表示)

(灵活应用)

如图③,有一块“缺角矩形” ABCDE AB = 32 BC = 40 AE = 20 CD = 16 ,小明从中剪出了一个面积最大的矩形( B 为所剪出矩形的内角),求该矩形的面积.

(实际应用)

如图④,现有一块四边形的木板余料 ABCD ,经测量 AB = 50 cm BC = 108 cm CD = 60 cm ,且 tan B = tan C = 4 3 ,木匠徐师傅从这块余料中裁出了顶点 M N 在边 BC 上且面积最大的矩形 PQMN ,求该矩形的面积.

科目 数学   题型 计算题   难度 中等
知识点: 相似三角形的判定与性质 四边形综合题 三角形中位线定理
登录免费查看答案和解析
相关试题

如图,在直角梯形ABCD中,∠D=∠BCD=90°,∠B=60°, AB=6,AD=9,
点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运
动到C时,EF与AC重合巫台).把△DEF沿EF对折,点D的对应点是点G,设DE=x,
△GEF与梯形ABCD重叠部分的面积为y。
(1) 求CD的长及∠1的度数;
(2) 若点G恰好在BC上,求此时x的值;
(3) 求y与x之间的函数关系式。并求x为何值时,y的值最大?最大值是多少?

如图,已知抛物线与x轴相交于A、B两点,其对称轴为直线,且与x轴交于点D,AO=1.
(1) 填空:b=_______。c=_______,
点B的坐标为(_______,_______):
(2) 若线段BC的垂直平分线EF交BC于点E,交x轴于点F.求FC的长;
(3) 探究:在抛物线的对称轴上是否存在点P,使⊙P与x轴、直线BC都相切?若存在,请求出点P的坐标;若不存在,请说明理由。

周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x小时,小名离家的路程y (干米) 与x (小时)之间的函致图象如图所示,
(1)小明去基地乘车的平均速度是________千米/小时,爸爸开车的平均速度应是________千米/小时;
(2)求线段CD所表示的函敛关系式;
(3)问小明能否在12:0 0前回到家?若能,请说明理由:若不能,请算出12:00时他离家的路程,

一副直角三角板叠放如图所示,现将含45°角的三角板ADE固定不动,把含30°角的三角板ABC绕顶点A顺时针旋转∠α(α=∠BAD且0°<α<180°),使两块三角板至少有一组边平行。
(1)如图①,α=______°时,BC∥DE;
(2)请你分别在图②、图③的指定框内,各画一种符合要求的图形,标出α,并完成各项填空:
图②中α=______°时,______∥______;图③中α=______°时,______∥______。

为庆祝建党90周年,某校团委计划在“七·一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲。为此提供代号为A、B、C、D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图。请根据图①,图②所提供的信息,解答下列问题:

,
(1)本次抽样调查的学生有_________名,其中选择曲目代号为A的学生占抽样总数的百分比是________%;
(2)请将图②补充完整;
(3)若该校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生选择此必唱歌曲?(要有解答过程)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号