已知抛物线 y = a x 2 + bx + c 过点 A ( 0 , 2 ) ,且抛物线上任意不同两点 M ( x 1 , y 1 ) , N ( x 2 , y 2 ) 都满足:当 x 1 < x 2 < 0 时, ( x 1 - x 2 ) ( y 1 - y 2 ) > 0 ;当 0 < x 1 < x 2 时, ( x 1 - x 2 ) ( y 1 - y 2 ) < 0 .以原点 O 为圆心, OA 为半径的圆与抛物线的另两个交点为 B , C ,且 B 在 C 的左侧, ΔABC 有一个内角为 60 ° .
(1)求抛物线的解析式;
(2)若 MN 与直线 y = - 2 3 x 平行,且 M , N 位于直线 BC 的两侧, y 1 > y 2 ,解决以下问题:
①求证: BC 平分 ∠ MBN ;
②求 ΔMBC 外心的纵坐标的取值范围.
化简:(每题4分) (1) 4x-(x-3y); (2) (5a2+2b2)-3(a2-4b2).
计算(每题4分) (1)(2) (2) (4)
计算:(本题共30分) (1)(-8)-(-1)(2)8+(-10)+(-2)-(-5)
(3)39×(-12)(4)24× (5)
求下列各式中的x( 每小题5分,共10分 ) ① ②
计算:(每小题4分
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号